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a b s t r a c t

Identification of dynamic characteristics of local nonlinearities has been aimed in this

paper. The spirit of the identification method is established on Optimum Equivalent

Linear Frequency response function (OELF). Dynamic behavior of nonlinear elements in

system is extracted from OELF using two different techniques. The first technique is

the nonlinearity’s behavior and the second technique is ‘‘Model based Identification

Method’’ (MIM). The second technique is introduced with two different formulations, in

order to take into account the practical limits due to the inaccessibility of nonlinearity

location and/or indeterminability of degree of freedom. Dynamic characteristics of

common nonlinearity mechanisms like cubic stiffness, pure slip, and stick-slip have

been identified using the proposed technique and it has been shown that, although the

proposed identification technique is simple, it does not require any sophisticated

measurement hardwares and techniques, as required by most of the identification

methods proposed so far. Also, the relation of this technique to harmonic balance

method is discussed.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

With continual interest to expand the performance envelope of structures at ever increasing speeds, there is the need
for designing lighter, more flexible, and hence more nonlinear structures, and consequently, less safety factors are allowed
in the design process. This brings about the need to produce more accurate and high fidelity FE models that can faithfully
represent the real system. On the other hand, one of the most difficult tasks in producing accurate FE models is to model
the joints properly. This is so because joints are localized elements with predominantly nonlinear and frequency
dependent dynamic characteristics. The only reliable method for successful modeling of joints is to identify their
mechanical characteristics and incorporate them in the FE model.

There are several published works on identification techniques. These works can be divided into two broad categories
namely, 1—identification techniques assuming linear dynamic behavior for joint [1–6] and, 2—identification techniques
assuming nonlinear behavior for joint [7–21]. Almost all of the techniques used in second category are based on the very
controlled measurements and use some sort of pre-assumed model for the joint behavior.

The main goal of the present work is to propose a nonlinear joint identification method that: (a) does not depend on the
sophisticated measurement hardwares and techniques and (b) can be used without any pre-assumption on the joint
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Nomenclature

CF constraint-free
CP connectivity pattern
CS cubic stiffness
DoF Degree of Freedom
FE finite element
FEM finite element method
FRF frequency response function
HBM harmonic balance method
MAC modal assurance criteria
NLSRM nonlinear single resonant mode
OELF optimum equivalent linear FRF
OELI optimum equivalent linear impedance
PS pure slip
RMS root mean square
SL specified location
SM symmetric
SS stick-slip
TD time domain
A coefficient matrix of final equation before

weighting
B constant vector of final equation before

weighting
C viscous damping matrix
Cn nonlinear viscous damping
E½�� expected value
F Fourier transform of f
G perturbing function
Hl underlying linear system FRF
Hn nonlinear system FRF
Ho OELF of nonlinear system
K linear stiffness matrix
K3ij

cubic stiffness between nodes i and j

Kn nonlinear stiffness matrix
Ksij

stiffness of Jenkin’s element between nodes i

and j

M mass matrix

P coefficient matrix of final equation after
weighting

Psij
pure slip friction force between nodes i and j

Q constant vector of final equation after weight-
ing

Sff auto-spectrum of input force
Sxx auto-spectrum of signal x
Sxnf input–output cross-spectrum
Ssij

stick-slip friction force of Jenkin’s element
between nodes i and j

T sampling period
Xn Fourier transform of xn

Xo Fourier transform of xo

Z nonlinearity’s impedance
Zj;: jth row of matrix Z
Z vector form of matrix Z
Zl underlying linear system impedance
Zn nonlinear system impedance
JZJ norm of matrix Z
a scalar perturbing coefficient
cij viscous damping between nodes i and j

f excitation force
fn internal force of nonlinear element
hnij

(i,j) element of Hn

kij linear stiffness between nodes i and j

mi mass of ith DoF
r number of frequency points
w frequency dependent weighting coefficient
x minimum contribution of nonlinearity in non-

linear system response
xo optimum equivalent linear system response
xn nonlinear system response
x relative displacement of two ends of nonlinear

element
xo critical displacement of Jenkin’s element
DH difference between nonlinear and linear sys-

tem FRFs
gn nonlinear structural damping matrix
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behavior and (c) be applicable for nonlinearities located at inaccessible/indeterminate degree of Freedoms (DoFs). To this
end, the theory of ‘‘Optimum Equivalent Linear Frequency Response Function (FRF)’’ (OELF) [22] will be used and hence the
proposed identification method is a frequency domain based method.
2. The theory of the optimum equivalent linear FRF

Fig. 1 shows a nonlinear system with force ‘‘f’’ as excitation and displacement ‘‘xn’’ as response. The displacement time
history will contain features due to nonlinearity which could not be produced by a linear system. Conceptually
nonlinearities and noise are similar in as much as they both produce features in the response which could not be produced
by a linear system.
NONLINEAR

STRUCTURE
f xn

OPTIMUN LINEAR

STRUCTURE
f

xo

x

xn

Fig. 1. Nonlinear and optimum equivalent linear system with corrected output.
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The nonlinear system output may be replaced by an equivalent linear system output with a correction term added to it.
The main goal of OELF method is to find an optimum model for equivalent linear system. In other words, if x is the part of
nonlinear system response that is not supplied by the linear system, it is desired to find a linear system with response xo

that minimizes the effect of x in xn, i.e. E[x2] must be reduced as much as possible. Frequency domain explanation of this
requirement is as follows:

E½x2� ¼

Z þ1
�1

SxxðoÞdo¼
Z þ1
�1

E
Xn � Xo

T

� �
do (1)

where X0 and Xn are the Fourier transform of xo and xn, respectively. Now, let Ho(o) be the FRF matrix of equivalent linear
model of the nonlinear system. Taking this definition into account, Eq. (1) can be written as follows:

E½x2� ¼

Z þ1
�1

E
Xn �HoF

T

� �
do (2)

Now, in order to find the optimum equivalent linear system that minimizes above integral, one has to find Ho(o) that
minimizes this integral over the frequency range of interest and, considering E[x2] as a functional, this can be done through
the calculus of variations. To this end, let us assume that Ho(o) is the FRF of optimum equivalent linear system and is
perturbed by aG(o) as in

HnðoÞ ¼HoðoÞþaGðoÞ (3)

Here G(o) is defined as a frequency dependent function and a is a frequency independent scalar variable. Consequently Eq.
(2) may now be written as follows: Z þ1

�1

SxxðoÞdo¼
Z þ1
�1

E
jXn � ðHoþaGÞFj2

T

� �
do (4)

The nonlinearity effects may be minimized by taking the derivative of Eq. (4) with respect to a and setting the result to
zero. Therefore the condition for the optimum linear equivalent FRF isZ þ1

�1

E
GðX�nF�H�oF�FÞþG�ðXnF� �HoFF�Þ

T

� �
do¼ 0 (5)

* is used for conjugate transpose. Taking the expectation it is seen that this condition may be written asZ þ1
�1

E
GðS�nf �H�oSff ÞþG�ðSnf �HoSff Þ

T

" #
do¼ 0 (6)

Since G may be any function, each term in the integrand is zero. Finally, the optimum equivalent linear model for Ho(o) is
described by

HoðoÞ ¼ Sxf S�1
ff (7)

As is evident from Eq. (7), the OELF is derived simply by performing FFT calculations on the excitation and nonlinear
response signals, and calculating the FRF function, as if we are dealing with a linear system input/output signals.

Also, if the variance of the excitation F is changed the spectral estimates of excitation and response will change in a non-
proportional manner and, as Eq. (7) implies, a new Ho(o) will be calculated. This is a very important point and indicates that, for
each level of excitation variance, an optimum equivalent liner model is calculated which is particular to that level of excitation.

From identification point of view, above conclusion means that OELF derived for each level of excitation carries some
characteristic effects of the nonlinearity existing in the system with itself. It is this effect which will be used to identify the
nonlinear mechanism in the system.

It is very important to note that damping of a nonlinear system may be described by OELF. Dissipated energy in
frequency domain can be written as follows:

ED¼

Z þo
�1

S _xf do¼ i

Z þo
�1

HnSffodo (8)

Eq. (8) represents exact amount of the energy dissipated by nonlinear damping provided that the OELF used involves the
force and displacement at nonlinearity location.

3. Identification process

Equation of motion for a MDoF system may be written as

M €xnþC _xnþKxnþfnðxn; _xnÞ ¼ f (9)

Considering harmonic excitation and defining ZnðXn; _XnÞ (in which _Xn is Fourier Transform of _xn) as the optimum
equivalent linear impedance of the system (here in after called OELI), frequency domain representation of Eq. (9) can be
written as Eq. (10) in which ZðXn; _XnÞ represents the optimum impedance of the nonlinear joint. Thus the OELI of system
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for each level of excitation is the sum of linear and optimum linear joint contributions and can be written as:

�o2Mþ ioCþKþZðXn; _XnÞ ¼ Zn (10)

The above statement and resulted Eq. (10) are, in concept, very similar to impedance derived from the first-order harmonic
balance.

The aim of present work is to identify ZðXn; _XnÞ for each and every level of random excitation and, in this respect, two
different methods are introduced, namely, 1—Direct and; 2—Model based, impedance Identification Methods (DIM and
MIM, respectively). Both methods will be discussed and examined in details.

3.1. Direct impedance identification

Examination of Eq. (10) implies that the ZðXn; _XnÞ may be derived from direct subtraction of the overall OELI and the
impedance of underlying linear system (zero-order impedance). This approach, being theoretically very simple, presents
some difficulties in practical identification work as the impedances are very difficult to measure. To get around this
problem, Eq. (10) will be reformulated in Eq. (13) using the technique introduced in [23] which was mainly used as a finite
element model updating technique for linear structures:

Z¼ Zn � Zl (11)

Rewriting this equation with FRF matrices Zn ¼H�1
n and Zl ¼H�1

l will have the following consequence:

Z¼H�1
n �H�1

l ¼H�1
n HlH

�1
l �H�1

n HnH�1
l (12)

Eq. (12) rearrangement leads to Eq. (13) in which no impedance is used except for that of the optimum equivalent joint
impedance:

HnZHl ¼Hl �Hn ¼ � DH (13)

3.1.1. Transformation into standard form

The next step is to convert Eq. (13) into a standard form. In the standard form Z is converted to a vector that contains
rows of Z. Consequently, right hand side of Eq. (13) is expressed in vector form too. Finally, new format of Eq. (13) is

& ^ c

� � � hni;j
HT

l � � �

c ^ &

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
AðoÞ

^

ZT
j;:

^

8><
>:

9>=
>;|fflfflfflffl{zfflfflfflffl}

Z

¼ �

^

DHT
j;:

^

8><
>:

9>=
>;|fflfflfflfflfflffl{zfflfflfflfflfflffl}

BðoÞ

(14)

In which subscripts i,j, j,: and superscript T mean ijth element, jth row and transpose of related matrix, respectively.
Selection of ith row of Hn and jth column of Hl is corresponding to kth row (k¼ ði� 1ÞNþ j, where N is the assumed number
of DoFs) of Eq. (14). The flow diagram for the DIM is presented in Fig. 2.

3.2. Model based impedance identification

Going back to Eq. (14) again, following models are defined for Z and introduced in Eq. (15):

ZðX Þ ¼
KnðX Þþ ioCnðX Þ for viscous damping

KnðX Þþ ignðX Þ for hystertic damping

(
(15)

where X designates RMSðxÞ in Eq. (15). As can be seen from Eq. (15), the nonlinear stiffness and damping are considered as
depending on RMS of response. As indicated in Section 2, this is due to the fact that OELI (or OELF) are derived for each level
of random excitation RMS value and this in turn directly corresponds to a specific response RMS value. Therefore, in
Nonlinear Structure 
OELF Matrix Measurement

Underlying Linear Structure 
FRF Matrix Measurement or Calculation

Using Eq. (14)

Nonlinear Impedance 
Dynamic Extraction

Fig. 2. DIM flow diagram.
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frequency domain nonlinearity may be described as a function of displacement RMS and this can be related to amplitude of
an equivalent harmonic signal as X ¼

ffiffiffi
2
p

RMSðxÞ. So, the nonlinear stiffness and loss factors can be related to the amplitude
of a harmonic excitation.

3.2.1. Frequency weighting

Depending on the physical nature of nonlinearity, high level of fluctuations is observed in OELFs for some excitation
levels. High level excitation for cubic stiffness nonlinearity and low level one for pure slip and stick-slip will lead to this
situation. These fluctuations in OELFs lead to erroneous results. To overcome this problem, equations are weighted along
the frequency axis. Weighting coefficient at each frequency is selected as JDHJ�1. Finally, Eq. (16) will be the weighted
form of Eq. (14) where Z in Eq. (16) is introduced in Eq. (14):

wðoÞAðoÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
PðoÞ

Z¼�wðoÞBðoÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Q ðoÞ

(16)

3.2.2. Least square problem

After weighting, in accordance with measured components of Hn, rows of Eq. (16) are selected at r frequency points and
this will lead to a least square equation as in

Pi;:ðo1Þ

^

Pi;:ðorÞ

2
64

3
75

^
Pk;:ðo1Þ

^

Pk;:ðorÞ

2
64

3
75

2
6666666666664

3
7777777777775
Z¼

Q iðo1Þ

^

Q iðorÞ

2
64

3
75

^
Q kðo1Þ

^

Q k;:ðorÞ

2
64

3
75

2
6666666666664

3
7777777777775

(17)

The flow diagram for the MIM is presented in Fig. 3.
Transform to standard form

Eq. (14)

Start

Hl (FE or Measurement)

Hn (Measurement)

Put  Hl and Hn into

Eq. (13)

Weight according to
Eq. (16)

Solve LS problem
Eq. (17)

End

Fig. 3. MIM flow diagram.
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4. Case studies, results and discussions

To examine the efficiency of the proposed method, series of case studies are considered. However, before considering
the case studies, it is important to clarify what is exactly meant by ‘‘joint’’ in this paper, in order to justify the models
considered in the case studies. Generally speaking, by joint we mean part of a structure or system that connects adjacent
components and/or structures that may or may not impose constraints on connecting degrees of freedom and, most
important of all, joints are much localized, i.e. relatively taking small proportion of the total degrees of freedom of the
system. The latter characteristic means that a joint behavior is very much location dependent and, for example, a joint may
have a significant linear or nonlinear effect on vibration behavior of a structure in one mode and much less effect or non for
the others.

With the definition given above in mind, the word joint can cover a broad span from adhesives to weld and of course
this means that significantly different values could be assigned to the characteristics of the joint in the case studies. The
values chosen are typical and are only serving for the purpose of demonstrating the efficiency of the proposed method.

4.1. System description

A 4DoF system is considered for all of the case studies. Fig. 4 shows this system. A nonlinear element is attached to the
system between ground and first DoF. The other components of the system are assumed to be linear viscous damping and
stiffness. Three types of nonlinearities are involved: (a) Cubic Stiffness (CS), (b) Pure Slip (PS), and (c) Stick-Slip (SS).
Coulomb model is considered for friction and SS is modeled by a Jenkins element which is shown schematically in Fig. 5.
The value of system parameters are listed in Table 1.

4.2. MAC analysis between modes from different methods

In order to assess that how well OELF describes the behavior of the nonlinear system compared to other methods, mode
shapes are estimated from the OELF for three types of the nonlinearities mentioned above at low and high RMS level of
excitations. In order to do this, system shown in Fig. 4 is subjected to pseudo random excitation and then equations of
motions are solved and OELF matrix is calculated using Eq. (7) and FFT analysis. In next step, modal analysis is performed
on OELFs by ICATS [24] modal analysis software.

The mode shapes extracted as above will be compared to the mode shapes which are derived directly from time history
of the response. In this respect, system is excited by a harmonic signal with a frequency very close to the nonlinear
resonances. Normalized displacement vector at an arbitrary time exhibits the related mode shape. This method is
x

mc

k
ks

Ss

F

Jenkin's element 

x

fN

Ss

-Ss

X
-X

A

B C

D

x0

ks

Fig. 5. (a) Jenkin’s element for stick-slip modeling and (b) Jenkin’s element force–displacement relation.

m1 m2 m3 m4Z01 Z12 Z23 Z34 Z40

Fig. 4. Nonlinear structure.
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designated as TD (time domain). In order to ensure that same amount of energy is transmitted to the system by the
excitation, the RMS values of responses for the pseudo random and harmonic excitations are kept in the same level. The TD
technique is used as a reference as it gives the most direct description of the first-order frequency response function of the
system. This is due to the fact that in deriving the first-order FRF with this method no assumptions are involved and the
time domain signal is directly used for the FRF estimation. This also means less numerical errors in calculations. It should
Table 1
System parameters values.

Mass (kg)

m1 m2 m3 m4

1 1 1 1

Viscous damping (kg/s)

c01 c12 c23 c34 c40

0.01 0.01 0.01 0.01 0.01

Linear stiffness (N/m)

k01 k12 k23 k34 k40

1000 800 900 700 900

Cubic stiffness (N/m3)

K301 K312 K323 K334 K340

107 0 0 0 0

Pure slip friction force (N)

Ps01 Ps12 Ps23 Ps34 Ps40

0.1 0 0 0 0

Jenkin’s stiffness (N/m)

Ks01 Ks12 Ks23 Ks34 Ks40

1000 0 0 0 0

Jenkin’s friction force (N)

Ss01 Ss12 Ss23 Ss34 Ss40

1 0 0 0 0

Fig. 6. MAC analysis for CS nonlinearity, (a) and (b) MAC (NLSRM and OELF), low and high excitation level, respectively; (c) and (d) MAC (TD and OELF),

low and high excitation level, respectively.
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be noticed, however, that nonlinear system response to a harmonic signal contains sub and super harmonics of excitation
and therefore the response will not be pure harmonic but, at least for weakly nonlinear systems, sub and super harmonics’
contributions in response are much smaller than main component hence, TD extracted modes are close to the real ones.

The third set of mode shapes which will be used for the comparison purpose is derived from Nonlinear Single Resonant
Mode (NLSRM) [25,26] method. In its present context, this method is only applicable for CS nonlinearity.

Fig. 6 shows the MAC results for CS nonlinearity. The first row displays correlation between modes estimated from OELF
and NLSRM at two different modal amplitudes. The second row contains the MAC for TD and OELF. This figure shows that
there is a good accordance between results. In fact, a better correlation can be seen between OELF and TD than NLSRM and
TD which indicates that OELF gives a more accurate description of the nonlinear system modal behavior for CS
nonlinearity.

MAC analysis results for PS nonlinearity are presented in Fig. 7. Again a fair amount of agreement exists here, too. It is
worth noticing that for this case the correlation is increased with modal amplitude increment which indicates a smaller
friction effect as the excitation level increases. This is in accordance with the results derived from HBM [27,28].

For the SS nonlinearity MAC result are shown in Fig. 8 which indicates a very good correlation between results.
Therefore, OELF proves to be a proper frequency-domain model of a nonlinear system at a specific level of excitation, at

least, as far as the three types of nonlinearities considered are involved.
4.3. Direct identification method results

Impedances of identified CS nonlinearity at three excitation levels are shown in Fig. 9. Nonlinearity lies between ground
and m1 therefore, only m1 displacement can excite the nonlinearity. As is evident from this figure, the first element of
identified impedance matrix has significant values in comparison with other. In fact, all elements except that of first row
have negligible value. Next, the second nonlinearity type, PS, is investigated by direct method. In this case, results are
shown as real and imaginary parts instead of magnitude and phase as this presentation is more meaningful for PS. Due to
its damping effect, imaginary part of impedance is more important for this type of nonlinearity. Imaginary part of Z is
Fig. 7. MAC analysis for PS nonlinearity, (a) and (b) MAC (TD and OELF), low and high level excitation, respectively.

Fig. 8. MAC analysis for SS nonlinearity, (a) and (b) MAC (TD and OELF), low and high level excitation, respectively.
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Fig. 9. Magnitude of estimated Z by DIM for CS nonlinearity: (a) jZð1;1Þj, (b) jZð2;1Þj, – – sF ¼ 0:350 N, —— sF ¼ 0:606 N, – � – sF ¼ 0:870 N.
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displayed in Fig. 10. As expected, first element of Z has signs of nonlinearity. Finally, real and imaginary parts of complex
dynamic stiffness Z for SS nonlinearity are shown in Fig. 11.

This result demonstrates the existence of nonlinearity in system. Also, the difference between identified results for
different excitation level is an indication of the system nonlinearity.

It is worth mentioning that for the both DIM and MIM the linear (zero order) FRF may be measured for CS and SS
nonlinearities by low level excitation and for PS nonlinearity by high level excitations. The linear FRF matrix can also be
derived from an accurate FE model and this method has advantages over measurement of linear FRF as it is not easy to
measure linear FRFs for PS and SS nonlinearities.

It is inferred form above studies that the nonlinearity existence and location may be identified but quantifying would be
very tedious by DIM.

4.4. Model based identification method results

The parameters Kn and gn in Eq. (15) are identified here. In order to assess the efficiency of the process, constraints will
be imposed on Z one at a time. Consequently, Z is assumed: 1—to be Constraint-Free (CF), 2—to be SyMmetric (SM), 3—to
have special Connectivity Pattern (CP), 4—to be Symmetric and to have special Connectivity pattern (SC) and 5—to have a
configuration in which nonlinearity has Specified Location (SL).

Also, due to the similarity between optimum equivalent impedance of the nonlinear system derived by Harmonic
Balance Method (HBM) with OELI in Eq. (10), the impedances derived by HBM for three nonlinear elements used in the case
studies will be compared with those identified by Eq. (17). Impedances derived by HBM for three considered nonlinearities
are displayed in Table 2. HBM has been employed to predict nonlinear impedance of some nonlinearities such as CS and PS
in many texts. But SS nonlinearity has not been considered in any publication to the authors’ knowledge. This problem is
investigated in appendix.
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Fig. 10. Imaginary part of estimated Z by DIM for PS nonlinearity: (a) ImðZð1;1ÞÞ, (b) ImðZð2;1ÞÞ, – –sF ¼ 0:520 N, —— sF ¼ 0:780 N, – � – sF ¼ 1:040 N.
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4.4.1. Cubic stiffness

Fig. 12 shows the identified Kn for CS nonlinearity. In these figures only first element has been displayed to maintain
brevity. Kn11

is the most important element of above matrices as nonlinearity is located between ground and m1. As
expected this stiffness term increases with RMSðxÞ. As is evident, although the best correlation between identified stiffness
and HBM is achieved when either complete Hn matrix or the first row of it is used in identification process, nevertheless,
fair amount of correlation exist between two set of parameters even when other rows of Hn is used in identification. In
Figs. 12a and b results related to CF constraint are more similar to HBM results.

The other identified elements of Kn matrix (which do not exist in reality) are several order of magnitude smaller than
the Kn11

and can be easily spotted and ignored. These identified elements can be attributed to inaccuracy in FFT analysis in
deriving the OELF matrix as well as the other numerical errors.

It is worth mentioning that, due to nonlinear effects, time signals are non-symmetric, and consequently OELF matrix
will not be symmetric either. This non-symmetry can also be observed in identified parameters. As mentioned in the
beginning of this section, part of the results is identified with symmetry enforced on the Kn matrix, in order to examine its
effects on the identified parameters.

4.4.2. Pure slip

Estimated gn for PS nonlinearity are presented in Fig. 13. As expected, Kn has no significant meaning because PS has no
stiffness effects. Equivalent damping coefficient decreases as displacement RMS increases. In this case like previous one
entire Hn and Hn(1,:) give better correlated results using different assumptions.

4.4.3. Stick-slip

Before reaching the displacement of m1 to the sliding threshold of Jenkins element, the discrepancy between underlying
linear system and nonlinear one is ks. In fact, system behaves linearly in this region. Sliding threshold i.e. xo ¼ ss01=ks01 is
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Fig. 11. Real and imaginary parts of estimated Z by DIM for SS nonlinearity: (a) ReðZð1;1ÞÞ, (b) ReðZð2;1ÞÞ, (c) ImðZð1;1ÞÞ, (d) ImðZð2;1ÞÞ – – sF ¼ 3:460 N,

—— sF ¼ 6:060 N, – � – sF ¼ 8:660 N.

Table 2
HB prediction for impedance of three nonlinearity types.

Nonlinearity Kn Zn

Cubic stiffness 3
4k3X2a

Pure slip 4

p
ps

X

Stick-slip 4ð2ss � ksXÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ssðksX � ssÞ

p
þk2

s X2ðpþ2bÞ
2pksX2

b
4ssðksX � ssÞ

pksX2

a X is the response amplitude.

b b¼ sin�1 2ss

ksX
� 1

� �
.
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equal to 1 mm with our selected parameters and the excitation levels has been chosen such that it is ensured that the
nonlinear element is excited.

Identified first elements of matrices Kn and gn are shown in Fig. 14. Outcomes of employing entire Hn are presented in
Fig. 14a and the rest parts of the figure include results derived by using individual rows. The most important element of
above matrices is the first i.e. Kn11

and gn11
using either entire Hn or Hn(1,:), the agreement between estimated Kn11

and gn11

with various constraints imposed with each other and with HBM is good.
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Fig. 12. CS nonlinearity identification by MIM using: (a) entire Hn, (b) 1st row of Hn, (c) 2nd row of Hn, — HB,+CF, � SM, n CP, & SC, J SL.
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In numerical solution of equation of motion, integration time steps should be very small, in order to be able to
adequately model the parallelogram shape of force–displacement diagram (Fig. 5b). Here, time step is set to be about the
inverse of 10 times of greatest system natural frequency. Consequently, exact shape of force–displacement diagram is not
considered. On the other hand, HBM models the parallelogram shape of force–displacement diagram with an elliptic. These
to different non-exact modeling cause some difference between identified parameters and HBM results especially, for
identified damping.

Estimation of Kn11
and gn11

using other rows of Hn leads to less accurate results though the general trend correlation is
still acceptable. This is more noticeable for damping coefficient. As expected, nonlinear stiffness is reduced by increasing
RMSðxÞ and hence the system has softening behavior. After a preliminary and brief increase, growth of RMSðxÞ reduces the
damping coefficient.

4.5. Response regeneration

The identified nonlinear parameters are incorporated in the model and, assuming a harmonic excitation, the amplitude
spectrum matrix of the response is calculated using an iterative solution procedure similar to HBM. Fig. 15 exposes the
comparison between such calculated amplitude spectrums with those calculated from HB, first-order FRF and OELF.

5. Practical considerations

Existence of matrix Hn in the left hand side of Eq. (13) implies that OELJ matrix, Z, can be estimated only at coordinates
for which Hn can be measured. In practice, nonlinearity may be located at inaccessible/indeterminate DoFs, e.g. rotational
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DoFs or, locations which are not accessible to mount sensor and hence Hn cannot be measured for those DoFs. Therefore, to
eliminate this limitation another form of Eq. (13) is introduced, as follows.

Lets Hl be the FRF matrix of underlying linear system which may be determined easily by FEM. Model obtained form
FEM can have any DoFs either translational or rotational ones. Now, the perturbation based version of Eq. (13) can be
derived as follows:

Zn ¼ ZlþZ

Hn ¼ ðZlþZÞ�1

Hn ¼Hl �HlZHlþOðZ2
Þ (18)

Terms OðZ2
Þ in Eq. (18) will be negligible if DH is small. Therefore, Eq. (13) may be reformed to

HlZHl � � DH (19)

Now, while only measured coordinates are present on the right hand side of Eq. (19), any desired OELJ matrix that
adequately represents the active DoFs of joint may be considered on the left hand side of Eq. (19).

Due to non-exact characteristic of Eq. (19), it should be solved iteratively and after each iteration step Hl is updated to
Hlnew
¼ ðH�1

lold
þZÞ�1. This process ends when Z calculated in ith step is small enough and/or DH becomes very small.

Accumulation of estimated impedances of overall process will be the desired identified OLEJ impedance.
Iteration process of solving Eq. (19) may experience difficulties if JDHJ is big and in this situation, relaxation techniques

prove to be very helpful. In this respect the JDHJ is reduced artificially by considering a proportion of real Hn on the right
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hand side of Eq. (19). After convergence is achieved on this portion then the real Hn will be used in a second round of the
solution.

The rest of the procedure would be the same as that used in Eqs. (14)–(17) and, as mentioned above, here Eq. (17) must
be solved iteratively. Fig. 16 shows the flow diagram of modified MIM.



ARTICLE IN PRESS

Fig. 15. Regenerated response at 1st DoF due to excitation at same DoF: (a) CS, (b) PS, (c) SS, — harmonic excitation, – – pseudo-random excitation,

& HBM, J identification results.

H. Kashani, A.S. Nobari / Journal of Sound and Vibration 329 (2010) 1460–14791474
5.1. Case studies

The same system used in Section 4, will be used to demonstrate the efficiency of the method based on Eq. (19). It is
worth mentioning that in all case studies explained below only part of the matrix Hn is exploited in calculations and the
rest of the elements of this matrix are considered as indeterminate.
5.1.1. Cubic stiffness

Fig. 17 shows the parameter identified using Eq. (19) and three last elements of second column of Hn. Fair amount of
correlation exist between results at low response RMSs but for high response RMSs this formulation fails to identify
CS nonlinearity except for CP and SC constraints. The other identified elements of Kn matrix (which do not exist in reality)
are several order of magnitude smaller than the Kn11

and can be easily spotted and ignored. As before, these
identified elements can be attributed to inaccuracy in FFT analysis in deriving the OELF matrix as well as the other
numerical errors.
5.1.2. Pure slip

Estimated gn for PS nonlinearity are shown in Fig. 18. As before, only element (1,1) of matrix gn have been displayed.
Here, three last elements of second columns of Hn are used for Eq. (19). Equivalent damping coefficient decreases as
displacement RMS increases. Results have a good agreement with HBM. In this case, nonlinearity reduces as response RMS
increases and so, results consistency will improve.
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5.1.3. Stick-slip

Element (1,1) of identified nonlinear stiffness and damping matrices are shown in Fig. 19 using Eq. (19). As in the
previous cases, three last elements of second columns of Hn are used. The agreement between estimated Kn11

and gn11
, with
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various constraints imposed, with HBM is good. As mentioned in MIM results, some of the differences between identified
results and HB estimation can be attributed to the fact that in HBM a perfect parallelogram is assumed to estimate
impedance while, in simulated identification process this situation does not exist. As is expected, nonlinear stiffness is
reduced by increasing RMSðxÞ and hence the system has softening behavior. Also, increase in RMSðxÞ reduces the damping
coefficient.

6. Conclusion

A general method was proposed for identification of nonlinear dynamics joint characteristics. It was shown that method
is simple and straight forward and does not require sophisticated experimental setup and yet can be efficiently applied to
three most important types of nonlinear mechanisms in dynamic analysis. Modified version of identification method was
introduced to consider the practical limitations such as indeterminable/inaccessible DoFs. This version is able to identify
nonlinearities even without measurement or excitation at nonlinearity location.

It is also demonstrated that the harmonic balance method and the proposed method are closely related and in fact, as
far as the nonlinear impedance of the joint is concerned, they are identical. The method can handle both viscous and
hystertic damping models and can be easily extended to identification of frequency dependent nonlinear joints.

Appendix A. HBM prediction for SS nonlinearity impedance

HBM has been employed to predict nonlinear impedance of some nonlinearities such as CS and PS in many texts. But SS
nonlinearity has been not considered in any publication to the authors’ knowledge. This problem is investigated here. In
Fig. 5a displacement of mass is considered to be harmonic as

xðtÞ ¼ X sinðot �jÞ (A.1)

Angular position of points AyD in Fig. 5b can be obtained with considering Eq. (A.2) as follows:

�X ¼ X sinðotA �jÞ ) otA �j¼ 2k0p� p
2

X ¼ X sinðotC �jÞ ) otC �j¼ 2k0pþ p
2

(A.2)

In which k0 ¼ 0;71;72;73; . . . and, for point B determined angular position is expressed by

�Xþ2xo ¼ X sinðotB �jÞ ) otB �j¼ 2k0pþsin�1 2
xo

X
� 1

� 	
¼ 2k0pþb (A.3)

Finally, point D has p radians shift relative to point B, i.e. otD �j¼ bþp. Fig. 20 describes the position and relation of
mentioned points on unit trigonometric circle.
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As response, the force of Jenkin’s element is considered to be harmonic as follows:

fssðtÞCa� cosotþb� sinot (A.4)

Eq. (A.4) in fact is the first harmonic term of Fourier expansion. Its coefficient may be calculated by either Fourier
relationships or Galerkin’s method, however, two methods are totally similar and their result is summarized in

a� ¼
2

T

Z T

0
fssðxðtÞÞcosot dt

b� ¼
2

T

Z T

0
fssðxðtÞÞsinot dt (A.5)

Breaking the interval of integral according to angular position of points AyD on the unit trigonometric circle and taking all
of the resultant integrals leads one to the following expressions for a� and b�:

a� ¼ �
4ð2Ss � ksXÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SsðksX � SsÞ

p
þk2

s X2ðpþ2bÞ
2pksX

sinjþ 4SsðksX � SsÞ

pksX
cosj

b� ¼ þ
4SsðksX � SsÞ

pksX
sinjþ 4ð2Ss � ksXÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SsðksX � SsÞ

p
þk2

s X2ðpþ2bÞ
2pksX

cosj (A.6)
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Fig. 20. Stick-slip switching points of Jenkin’s element on unit trigonometric circle.
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Substituting Eq. (A.6) in equation of motion and comparing with the linear impedance definition, give HB estimated
impedance of Jenkin’s element. This impedance is as follows:

Z ¼
4ð2Ss � ksXÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SsðksX � SsÞ

p
þk2

s X2ðpþ2bÞ
2pksX2

þ i
4SsðksX � SsÞ

pksX2
(A.7)

References

[1] K. Jahani, A.S. Nobari, Identification of dynamic (Young’s andshear) moduli of a structural adhesive using modal based direct model updating
method, Experimental Mechanics (2008) 599–611, doi:10.1007/s11340-008-9131-7.

[2] J.R.F. Arruda, S.H.S. Carneiro, Experimental estimation of mechanical joint parameters using frequency response function and modal parameters,
Proceedings IMAC (1993) 1502–1507.

[3] W.L. Li, A new method for structural model updating and joint stiffness identification, Mechanical Systems and Signal Processing 16 (1) (2002)
155–167.

[4] M.J. Ratcliffe, N.A.J. Lieven, A generic element-based method for joint identification, Mechanical Systems and Signal Processing 14 (1) (2000) 3–28.
[5] K.T. Yang, Y.S. Park, Joint structural parameter identification using a subset of frequency response function measurement, Mechanical Systems and

Signal Processing 7 (6) (1993) 509–530.
[6] J.H. Wang, S.C. Chaung, Reducing errors in the identification of structural joint parameters using error functions, Journal of Sound and Vibration 273

(1–2) (2004) 295–316.
[7] F. Thouverez, L. Jezequel, Identification of a localized non-linearity, International Journal of Non-Linear Mechanics 33 (1998) 935–939.
[8] D.M. Storer, G.R. Tomlinson, Recent developments in the measurements and interpretation of higher order functions from nonlinear structures,

Mechanical Systems and Signal Processing 7 (1993) 173–189.
[9] A. Chatterjee, N.S. Vyas, Non-linear parameter estimation through Volterra series using the method of recursive iteration through harmonic probing,

Journal of Sound and Vibration 268 (2003) 657–678.
[10] A. Chatterjee, N.S. Vyas, Non-linear parameter estimation in multi-degree-of-freedom systems using multi-input Volterra series, Mechanical Systems

and Signal Processing 18 (2004) 457–489.
[11] G. Kerschen, K. Worden, A.F. Vakakis, J.C. Golinval, Past, present and future of nonlinear system identification in structural dynamics, Mechanical

System and Signal Processing 20 (2006) 505–592.
[12] K. Yasuda, S. Kawamura, K. Watanabe, Identification of nonlinear multi-degree-of-freedom systems (presentation of an identification technique),

JSME International Journal Series III 31 (1988) 8–14.
[13] K. Yasuda, S. Kawamura, K. Watanabe, Identification of nonlinear multi-degree-of-freedom systems (identification under noisy measurements), JSME

International Journal Series III 31 (1988) 302–309.
[14] M. Thothadrai, R.A. Casas, F.C. Moon, R. D’Andrea, C.R. Johnson, Nonlinear system identification of multi-degree-of-freedom systems, Nonlinear

Dynamics 32 (2003) 307–322.
[15] M. Thothadrai, F.C. Moon, Nonlinear system identification of systems with periodic limit-cycle response, Nonlinear Dynamics 39 (2005).
[16] H.J. Rice, J.A. Fitzpatrick, The measurement of nonlinear damping in single-degree-of-freedom systems, Journal of Vibration and Acoustics 113 (1991)

132–140.
[17] H.J. Rice, J.A. Fitzpatrick, A procedure for the identification of linear and non-linear multi-degree-of-freedom systems, Journal of Sound and Vibration

149 (1991) 397–411.
[18] C.M. Richards, R. Singh, Identification of multi-degree-of-freedom non-linear systems under random excitations by the reverse-path spectral

method, Journal of Sound and Vibration 213 (1998) 673–708.
[19] J.A. Fitzpatrick, H.J. Rice, Comments on identification of multi-degree-of-freedom non-linear systems under random excitations by the ‘reverse path’

spectral method, Journal of Sound and Vibration 237 (2000) 357–358.
[20] D.E. Adams, R.J. Allemang, A frequency domain method for estimating the parameters of a non-linear structural dynamic model through feedback,

Mechanical Systems and Signal Processing 14 (2000) 637–656.

dx.doi.org/10.1007/s11340-008-9131-7.3d


ARTICLE IN PRESS

H. Kashani, A.S. Nobari / Journal of Sound and Vibration 329 (2010) 1460–1479 1479
[21] M.R. Hajj, J. Fung, A.H. Nayfeh, S. Fahey, Damping identification using perturbation techniques and higher-order spectra, Nonlinear dynamics 23
(2000) 189–203.

[22] H.G.D. Goyder, Short Course Notes: Vibration Analysis and Identification of Nonlinear Structures, University of Manchester, Simon Engineering
Laboratories, NY, 1985.

[23] R.M. Lin, D.J. Ewins, Model updating using FRF Data, 15th International Modal Analysis Seminar, Leuven, Belgium, 1990, pp. 141–163.
[24] ICATS Manual, Imperial College of Science, Technology and Medicine, Mechanical Engineering Department, Exhibitation Road, London SW7 2BX,

1994.
[25] W. Szemplinska-Stupnicka, The modified single mode method in the investigation of the resonant vibrations of nonlinear systems, Journal of Sound

and Vibration 63 (1979) 475–489.
[26] A.S. Nobari, M. Shahramyar, Improvement of nonlinear single resonant mode method, Journal of Vibration and Acoustic 125 (2003) 59–63.
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